Stoffgesetz

Gesamtdehnung

Die Gesamtdehnung setzt sich aus der Überlagerung (Superpostion) des elastischen Anteils und des thermischen Anteils \(\alpha_T \Delta T\) zusammen:
$$ \epsilon=\frac{\sigma}{E}+\alpha_T \Delta T$$
Setzt man für die Spannung \(\sigma\) noch den Zusammenhang \(\sigma = \dfrac{F}{A} \) ein, dann ergibt sich für die Gesamtdehnung \(\epsilon\):
$$ \epsilon=\frac{F}{EA}+\alpha_T \Delta T$$

Längenänderung Zug- und Druckstab

Wird ein Stab mit konstanter Dehnsteifigkeit \(E A \) und einer Einzelkraft \(F \) belastet wird die Längenänderung \(\Delta l\) wie folgt berechnet:
$$ \Delta l=\frac{F l}{E A}+\alpha_T \Delta T l$$
\( E \) E-Modul \( \frac{N}{m²}= \frac{kg}{m \cdot s^2} \)
\( A \) Querschnittsfläche \( m² \)
\( \alpha_T \) thermischer Ausdehnungskoeffizient \( \dfrac{1}{K} \)
\( \Delta T \) Temperaturänderung \( K \)
\( \epsilon \) Dehnung